
The OMG Approach
(continued)

CORBA, CCM, OMA, and MDA

CORBA History

  CORBA 1 was all about object request brokers
and IDL is its hallmark contribution.

  CORBA 2 focuses on interoperation (and
interworking) and IIOP is its hallmark.

  CORBA 3 focuses on component and system
integration and CCM is its hallmark.

Object Management Architecture

  Since CORBA 2, the OMG’s overall effort is
called the object management architecture
(OMA).

  The OMA adds several new areas of
standardization:
–  CORBA Services: object service specifications
–  CORBA Facilities: facility specifications
–  A set of application object specifications
–  CCM: the CORBA Component Model

Object Management Architecture (2)

The OMA Reference Model shown above identifies and characterizes
the components, interfaces, and protocols that compose the OMA.

ORB

  Central to the OMA model - its communications heart -
is the Object Request Broker (ORB) component that
enables clients and objects to communicate in a
distributed environment.

  The ORB provides an infrastructure allowing objects to
communicate independent of the specific platforms and
techniques used to implement the addressed objects.

  The ORB guarantees portability and interoperability of
objects over a network of heterogeneous systems.

  It supports embedded and real-time systems as well as
those requiring fault tolerance and other Quality of
Service requirements.

CORBA Services

  The CORBA Services component standardizes the life
cycle management of objects.

  Functions are provided to create objects, to control
access to objects, to keep track of relocated objects and
to consistently maintain the relationship between
groups of objects.

  The CORBA Services components provide the generic
environment in which single objects can perform their
tasks.

  Standardization of CORBA Services leads to
consistency over different applications and improved
productivity for the developer.

CORBA Facilities

  Vertical CORBA Facilities represent components
providing computing solutions for business problems
within a specific vertical market (e.g., healthcare,
manufacturing, finance).
–  Lists of Vertical CORBA Facility specifications are provided on

the OMG web site.

  Horizontal CORBA Facilities represent those
components providing support across an enterprise
and across businesses.
–  A Digital Asset Management component serves as an example

of such a component.

Application Objects

  The Application Objects part of the architecture
represents those objects performing specific tasks for
users.

  Application objects can invoke methods on remote
objects either statically or dynamically in a distributed
environment through the ORB.

  Application objects standardized by the OMG represent
domain frameworks.

  An application is typically built from a large number of
basic object classes. New classes of application objects
can be built by modification of existing classes through
generalization or specialization of existing classes
(inheritance) as provided by CORBA Services.

Naming and Trader Services
  The naming service allows arbitrary names to be

associated with an object. Names are unique within a
naming context and naming contexts form a hierarchy.

  The resulting naming tree is quite similar to directory
structures in file systems.

  The trader service allows providers to announce their
services by registering offers. Clients can use a trader to
locate services by description.

  A trader organizes services into trading contexts.
Clients can search for services, based on parts of
descriptions and keywords, within selected contexts.

  The naming service can be compared to White Pages
and the trader service to Yellow Pages.

Event and Notification Services
  The event service allows event objects that can

be sent from event suppliers to event
consumers to be defined.

  Event objects are immutable in that information
flows strictly in one direction, from supplier to
consumer.

  Events travel through event channels that
decouple supplier from consumer.

  Events can be typed (described using OMG
IDL) and channels can be used to filter events
according to their type.

Event and Notification Services (2)
  The event channel supports both the “push”

and the “pull” model of event notification.
–  In the “push” model, the event supplier calls a push

method on the event channel, which reacts by calling
the push method of all registered consumers.

–  In the “pull” model, the consumer calls the pull
method of the event channel, effectively polling the
channel for events. The channel then calls a pull
method on the registered suppliers and returns an
event object if it found a supplier that returned an
event object.

Event and Notification Services (3)
  The notification service includes support for:

–  Quality of service (QoS) specification and
administration.

–  Standards for typed and structured events.
–  Dynamic event filtering based on type and QoS.
–  Filtering at source, channel, consumer group, and

individual consumer level.
–  Event discovery among source, channel, and client.

  Technically, the notification “service” is not a
CORBA service but a CORBA horizontal
facility.

Object Transaction Service (OTS)
  The OTS automatically maintains a current transaction

context that is propagated along with all ORB-mediated
requests.

  The context is passed to any CORBA object that
implements interface TransactionalObject.

  The transaction operations begin, commit, and rollback
are defined on the current context.

  Instead of providing transaction control as a separate
service, as promoted by the OTS design, it is now more
common to integrate transaction services into a
container abstraction provided by an application server
(as in the CORBA Component Model).

Security Service

  The CORBA Security specification defines a number of
services for tasks such as authentication, secure
communication, delegation of credentials (also known
as impersonation), and non-repudiation.

  Most products don’t actually support the full spectrum
of security services in this specification.
–  Some simply rely on secure sockets layer (SSL).
–  Using SSL is fine to establish simple authentication and secure

communication properties. However, it does not support more
advanced concepts such as delegation or non-repudiation.

Other Services

  Concurrency control
  Licensing
  Lifecycle
  Relationship
  Persistent state

  Externalization
  Properties
  Object query
  Object collections
  Time

CORBA Component Model

  CCM describes a standard application framework for
CORBA components. It is similar to EJB, but more
general, providing four component types instead of the
two that EJB defines.
–  service, session, entity, and process components

  Enterprise JavaBeans components and CCM
components can be combined in a single application.

  It provides an abstraction of entities that can provide
and accept services through well defined named
interfaces called ports.

Features of CCM Components

  A CCM component is programmatically characterized
by a number of features:

  Ports that are classified into facets, receptacles, event
sources, and event sinks.
–  A facet is a provided interface and a receptacle is a required

interface. A component instance’s receptacles are connected to
other instances’ facets. A special facet of a CCM component is
the equivalent interface, which enables navigation between the
different facets of a CCM component.

–  Event sources and event sinks are similar, but instead of being
connected to each other, they are both connected to event
channels.

Features of CCM Components (2)

  Primary keys, which are values that instances of entity components
provide to allow client identification of the instances.

  Attributes, which are named values exposed via accessors and
mutators.

  Home interfaces, which provide factory functionality to create new
instances.

CCM Containers
  Every CCM component instance is placed inside a CCM

container.
  Containers provide transactions, security, persistence,

and notification services to components via interfaces
on the container.

  A number of options are available for each of the four
services that CCM packages.
–  Transaction control can be container-managed or self-managed.

In the container-managed case, the container will begin and
end transactions to meet requests.

–  Similarly, persistence can be declared as container-managed or
self-managed.

–  For security, required access permissions can be declared on
operations and will be checked by the container.

Model Driven Architecture
  The idea of MDA is for specifications to be written at

two levels, namely platform-independent models
(PIMs) and corresponding platform-specific models
(PSMs.

  The hope is that business processes and entities can be
modeled at the PIM level to a degree of precision that
then enables the automatic generation of large parts of
implementations for a variety of platforms, driven by
PIM-level models and PIM-to-PSM mappings for the
target platform.

  An MDA goal is to “embrace CORBA, J2EE, XML, .NET
and other technologies”.
–  It remains to be seen to what extent this goal can be met.

