
Functional Programming

With examples in F#

Pure Functional Programming
•  Functional programming involves evaluating

expressions rather than executing commands.

•  Computation is largely performed by applying
functions to values.

•  The value of an expression depends only on the
values of its sub-expressions (if any).
–  Evaluation does not produce side effects.
–  The value of an expression cannot change over time.
–  No notion of state.
–  Computation may generate new values, but not change

existing ones.

Advantages
•  Simplicity

–  No explicit manipulation of memory.
–  Values are independent of underlying machine with

assignments and storage allocation.
–  Garbage collection.

•  Power
–  Recursion
–  Functions as first class values

•  Can be value of expression, passed as argument, placed in data
structures. Need not be named.

F#
•  May be either interpreted or compiled.

•  Interacting with the interpreter
–  Supply an expression to be evaluated
–  Bind a name to a value (could be a function)

> 3.14159
val it : float = 3.14159

> let pi = 3.14159
val pi : float = 3.14159

> pi
val it : float = 3.14159

Arithmetic Expressions
> 5 * 7
val it : int = 35

> 5 * (6 + 4)
val it : int = 50

> 5.0 + 3.2
val it : float = 8.2

> pi * 4.7
val it : float = 14.765473

Arithmetic Expressions (2)
> 5.0 + 3

5.0 + 3
------^

error: The type 'int' does not
match the type 'float’

> 5.0 + float 3
val it : float = 8.0

Anonymous Functions
•  The fun keyword creates anonymous functions.

–  This can be useful when the function is used
immediately or passed as a parameter to another
function.

!(fun param param … -> expression)

>  let double = (fun x -> x + x)
val double : int -> int

>  double 18
val it : int = 36

>  (fun x -> x * 3) 18
val it : int = 54

Functions: Multiple Parameters
•  Consider a function to add two numbers:

>  add 3 7
val it : int = 10

•  In F# we would define this as:
>  let add = (fun x -> (fun y -> x + y))
val add : int -> int -> int

•  Notice that add is really a function that takes one
parameter, x, and returns a second function that takes
another parameter, y, and adds it to x.

•  For example, the value of (add 3) is a function that
takes one parameter and adds it to 3.

Functions: Multiple Parameters
•  If we think of add as a function of two parameters, then

(add 3) is a partial application of that function.

•  Given the previous definition of add, we could define:
>  let add3 = (add 3)
val add : int -> int -> int

•  Now we can use add3:
>  add3 5
val it : int = 8

•  All of this makes sense because functions are true
values.

Function Definition Shorthand
let name param param … = expression!

>  let add x y = x + y
val add : int -> int -> int

>  let add (x: float) y = x + y
val add : float -> float -> float

>  add 3.2 1.8
val it : float = 5.0

If-Else Expressions
•  Unlike if-else statements in imperative languages,

if-else constructs are expressions, i.e. they have a
value:

 if test then
 expression1
else
 expression2

•  If the test is true, the value is the value of
expression1, otherwise the value of expression2.

If-Else Example

>  let x = 5
>  let y = 10
>  let n =
 if (x > y) then
 x – y
 else
 x + y
val n : int = 15

Naming vs. Assignment

int f(int i)
{
 int x = 0;

 if (i > 10){
 int x = 1;
 }
 else {
 int x = 2;
 }

 return x;
}

int f(int i)
{
 int x = 0;

 if (i > 10){
 x = 1;
 }
 else {
 x = 2;
 }

 return x;
}

In F# a let expression creates a new variable, it never
changes the value of an existing variable. Similar to a
declaration (as opposed to assignment) in C:

Recursion
•  Most non-trivial functions are recursive.

•  Why is iteration not very useful in functional
programming?

•  To create a recursive function in F#, you must use
the rec keyword.
>  let rec factorial n =
 if n = 0 then 1
 else n * factorial (n-1)

 val factorial : int -> int

>  factorial 10
val it : int = 3628800

Tuples
•  A tuple is defined as a comma separated collection of

values. For example, (10, "hello") is a 2-tuple with
the type (int * string).
–  Tuples are useful for creating data structures or defining

functions that return more than one value.
>  let swap (a, b) = (b, a)
val swap : 'a * 'b -> 'b * 'a

•  'a and 'b denote generic types to be inferred from the function call:
>  swap (”day", ”night")
val it : string * string = (”night", ”day")

-  Can also be used to bind multiple values in a let:
>  let x, y = (5, 7)
val y : int = 7
val x : int = 5

Lists
•  A list is a sequence of zero or more values of the

same type.

•  A list is written by enclosing its elements in []
separated by semicolons:
>  let firstList = ["a"; "b"; "c"]
val firstList : string list = ["a"; "b"; "c"]

•  F#, like all functional languages, implements its
lists as linked lists. Essentially, a list node in F#
consists of a value (its head) and a tail, which is
another list.

Operations on Lists
> firstList

val it : string list = ["one"; "two"; "three"]

> List.length firstList
val it : int = 3

> List.head firstList
val it : string = "one"

> List.tail firstList
val it : string list = ["two"; "three"]

> firstList @ ["four"; "five"]
val it : string list = ["one"; "two"; "three";
"four"; "five"]

> "zero"::firstList
val it : string list = ["zero"; "one"; "two";
"three"]

List Operations (2)
•  Most of the list operations would be easy to define

ourselves.

•  Example, length function:

 > let rec length list =
 if list = [] then 0
 else length (List.tail list) + 1

 val length : 'a list -> int when 'a : equality

 > length [2; 3; 5; 4; 1]

 val it : int = 5

Option Types
•  An option type can hold two possible values:

Some(x) or None.
–  Option types are frequently used to represent optional

values in calculations, or to indicate whether a
particular computation has succeeded or failed.

–  Example: Avoid divide by zero exception
>  let div x y =
 if y = 0.0 then None
 else Some (x/y)

>  div 4.0 3.2
val it : float option = Some 1.25

>  div 4.2 0.0
val it : float option = None

Pattern Matching
>  let rec length list =

 match list with
 | [] -> 0
 | _ -> length (List.tail list) + 1

>  let div x y =
 match y with
 | 0.0 -> None
 | _ -> Some (x/y)

>  let rec last list =
 match list with
 | [] -> None
 | [x] -> Some x
 | _ -> last (List.tail list)

Efficiency: Cons vs. Append
> let x1 = []

> let x2 = "c"::x1

> let x3 = "b"::x2

> let x4 = "a"::x3

> x1
 val x1 : 'a list = []
> x2
 val x2 : string list = ["c"]

> x3
 val x3 : string list = ["b"; "c"]

> x4
 val x4 : string list = ["a"; "b"; "c"]

a	

b	

c	

List Nodes	

x4	

x3	

x2	

x1	

Efficiency: Cons vs. Append (2)

> let x1 = ["a"]

> let x2 = x1 @ ["b"]

> let x3 = x2 @ ["c"]

> x1
 val x1 : string list = ["a"]
> x2
 val x2 : string list = ["a"; "b"]
> x3
 val x3 : string list = ["a"; "b"; "c"]!

List Nodes	

a	

x1	

b	

x3	

c	

a	

x2	

a	

b	

Efficiency: Tail Recursion
•  When a recursive function returns the result of its

recursive call, there is no need to maintain a stack
of activation records.

>  let rec last list =
 match list with
 | [] -> None
 | [x] -> Some x
 | _ -> last (List.tail list)

Efficiency: Tail Recursion (2)
>  let rec length list =

 match list with
 | [] -> 0
 | _ -> length (List.tail list) + 1

>  let rec length_help list acc =
 match list with
 | [] -> acc
 | _ -> length-help (List.tail list) (acc + 1)

>  let length list = length_help list 0

Nested Functions
>  F# allows programmers to nest functions inside other functions.

This prevents the top level name space from becoming cluttered
with helper functions:

>  let length list =

 let rec length_help list acc =
 match list with
 | [] -> acc
 | _ -> length_help (List.tail list) (acc + 1)

 length_help list 0

Applications: Insertion Sort
let rec insertion_sort list =

 let rec insert n list =
 if List.length list = 0 then
 [n]
 else if n < (List.head list) then
 n::list
 else
 (List.head list)::(insert n (List.tail list))

 if List.length list = 0 then
 list
 else
 insert (List.head list) (insertion_sort (List.tail list))

Applications: Merge Sort

let rec merge_sort list =

 // merge two sorted lists (helper function)

 let rec merge x y =

 if x = [] then y

 else if y = [] then x

 else if (List.head x) < (List.head y) then

 (List.head x)::(merge (List.tail x) y)

 else (List.head y)::(merge x (List.tail y))

Applications: Merge Sort (2)
 // split a list in two (helper function)

 let rec split list (a, b) =

 if list = [] then (a, b)

 else split (List.tail list) (b, (List.head list)::a)

 // sort

 if (List.length list) < 2 then list

 else

 let fstHalf, sndHalf = split list ([], [])

 merge (merge_sort fstHalf) (merge_sort sndHalf)

Higher Order Functions: Map
•  Higher order functions are functions that

take functions are arguments or return
functions.

•  The List.map function takes a function and
a list as arguments, and returns a list of
values obtained by applying the function to
each element of the list:
>  let double x = x + x

>  List.map double [2; 4; 6]
val it : int list = [4; 8; 12]

Example: Searching
•  A directed acyclic graph in F#

let g = [
("a", ["b"; "c"; "d"]);
("b", []);
("c", ["e"]);
("d", ["f"; "g"]);
("e", []);
("f", ["h"; "i"; "j"]);
("g", []);
("h", [])
("i", []);
("j", [])]

A	

B	

 C	

 D	

E	

 F	

H	

 I	

 J	

G	

let rec successors node graph =
 if graph = [] then []

else
 let head = List.head graph
 if fst head = node then snd head
 else successors node (List.tail graph)

let path_extensions path graph =
List.map (fun node -> node::path) (successors (List.head path) graph)

Searching (2)

let rec expand graph goal paths =
if paths = [] then []
else
 let first_path = List.head paths
 let remaining_paths = List.tail paths
 if List.head first_path = goal then
 first_path
 else
 expand graph goal ((path_extensions first_path graph) @ remaining_paths)

let search graph start goal =
List.rev (expand graph goal [[start]])

Searching (3)

search g "a" "i"

expand g "i" [["a"]]

