
Software Design

 Deriving a solution which

satisfies software requirements

Objectives

• To introduce the process of software design

• To describe the different stages in this design

process

• To show how object-oriented and functional

design strategies are complementary

• To discuss some design quality attributes

Topics covered

• The design process and design methods

• Design strategies including object-oriented design

and functional decomposition

• Design quality attributes

Stages of design
• Problem understanding

– Look at the problem from different angles to discover
the design requirements

• Identify one or more solutions

– Evaluate possible solutions and choose the most
appropriate depending on the designer's experience and
available resources

• Describe solution abstractions

– Use graphical, formal or other descriptive notations to
describe the components of the design

• Repeat process for each identified abstraction
until the design is expressed in primitive terms

The design process

• Any design may be modeled as a directed

graph made up of entities with attributes which

participate in relationships

• The system should be described at several

different levels of abstraction

• Design takes place in overlapping stages. It is

artificial to separate it into distinct phases but

some separation is usually necessary

From informal to formal design

Phases in the design process

Design phases

• Architectural design Identify sub-systems

• Abstract specification Specify sub-systems

• Interface design Describe sub-system interfaces

• Component design Decompose sub-systems

into components

• Data structure design Design data structures to

hold problem data

• Algorithm design Design algorithms for problem

functions

Hierarchical design structure

Top-down design

• In principle, top-down design involves starting

at the uppermost components in the hierarchy

and working down the hierarchy level by level

• In practice, large systems design is never

truly top-down. Some branches are designed

before others. Designers reuse experience (and

sometimes components) during the design

process

Design methods

• Structured methods are sets of notations for

expressing a software design and guidelines for

creating a design

• Well-known methods include Structured Design

(Yourdon), and JSD (Jackson Method)

• Can be applied successfully because the

support standard notations and ensure

designs follow a standard form

• Structured methods may be supported with

CASE tools

Method components

• Many methods support comparable views of a

system

• A data flow view (data flow diagrams) showing

data transformations

• An entity-relation view describing the logical

data structures

• A structural view showing system components

and their interactions

Method deficiencies

• They are guidelines rather than methods in the

mathematical sense. Different designers create

quite different system designs

• They do not help much with the early, creative

phase of design. Rather, they help the designer

to structure and document his or her design

ideas

Design description

• Graphical notations. Used to display

component relationships

• Program description languages. Based on

programming languages but with more flexibility

to represent abstract concepts

• Informal text. Natural language description.

• All of these notations may be used in large

systems design

Design strategies

• Functional design

The system is designed from a functional
viewpoint. The system state is centralized and
shared between the functions operating on that
state

• Object-oriented design

The system is viewed as a collection of
interacting objects. The system state is de-
centralized and each object manages its own
state. Objects may be instances of an object
class and communicate by exchanging
messages.

Functional view of a compiler

Object-oriented view of a compiler

Mixed-strategy design

• Although it is sometimes suggested that one

approach to design is superior, in practice, an

object-oriented and a functional-oriented

approach to design are complementary

• Good software engineers should select the

most appropriate approach for whatever

sub-system is being designed

Aircraft sub-systems

High-level objects

• The navigation system

• The radar system

• The communications system

• The instrument display system

• The engine control system

• ...

18

System functions (sub-system level)

• Display track (radar sub-system)

• Compensate for wind speed (navigation

sub-system)

• Reduce power (engine sub-system)

• Indicate emergency (instrument sub-system)

• Lock onto frequency (communications

sub-system)

• ...

Low-level objects

• The engine status

• The aircraft position

• The altimeter

• The radio beacon

• ...

20

Design quality

• Design quality is an elusive concept. Quality

depends on specific organizational priorities

• A 'good' design may be the most efficient, the

cheapest, the most maintainable, the most

reliable, etc.

• The attributes discussed here are concerned

with the maintainability of the design

• Quality characteristics are equally applicable to

function-oriented and object-oriented designs

Cohesion

• A measure of how well a component 'fits

together'

• A component should implement a single logical

entity or function

• Cohesion is a desirable design component

attribute as when a change has to be made, it

is localized in a single cohesive component

• Various levels of cohesion have been identified

Cohesion levels

• Coincidental cohesion (weak)

– Parts of a component are simply bundled together

• Logical association (weak)

– Components which perform similar functions are

grouped

• Temporal cohesion (weak)

– Components which are activated at the same time are

grouped

• Procedural cohesion (weak)

– The elements in a component make up a single control

sequence

Cohesion levels

• Communicational cohesion (medium)

– All the elements of a component operate on the same
input or produce the same output

• Sequential cohesion (medium)

– The output for one part of a component is the input to
another part

• Functional cohesion (strong)

– Each part of a component is necessary for the execution
of a single function

• Object cohesion (strong)

– Each operation provides functionality which allows
object attributes to be modified or inspected

Cohesion as a design attribute

• Not well-defined. Often difficult to classify

cohesion

• Inheriting attributes from super-classes

weakens cohesion

• To understand a component, the super-classes

as well as the component class must be

examined

• Object class browsers assist with this process

• A measure of the strength of the inter-connections

between system components

• Loose coupling means component changes are

unlikely to affect other components

• Shared variables or control information

exchange lead to tight coupling

• Loose coupling can be achieved by state

decentralization (as in objects) and component

communication via parameters or message

passing

Coupling

Tight coupling

Loose coupling

• Object-oriented systems are loosely

coupled because there is no shared state and

objects communicate using message passing

• However, an object class is coupled to its

super-classes. Changes made to the attributes

or operations in a super-class propagate to all

sub-classes. Such changes must be carefully

controlled

Coupling and inheritance

• Related to several component characteristics

– Cohesion. Can the component be understood on its

own?

– Naming. Are meaningful names used?

– Documentation. Is the design well-documented?

– Complexity. Are complex algorithms used?

• Informally, high complexity means many

relationships between different parts of the

design. hence it is hard to understand

• Most design quality metrics are oriented

towards complexity measurement. They are

of limited use

Understandability

• A design is adaptable if:

– Its components are loosely coupled

– It is well-documented and the documentation is up to

date

– There is an obvious correspondence between design

levels (design visibility)

– Each component is a self-contained entity (tightly

cohesive)

• To adapt a design, it must be possible to trace the

links between design components so that change

consequences can be analyzed

Adaptability

Design traceability

• Inheritance dramatically improves adaptability.

Components may be adapted without change

by deriving a sub-class and modifying that

derived class

• However, as the depth of the inheritance

hierarchy increases, it becomes increasingly

complex. It must be periodically reviewed and

restructured

Adaptability and inheritance

• Design is a creative process

• Design activities include architectural design,

system specification, component design, data

structure design and algorithm design

• Functional decomposition considers the system

as a set of functional units

• Object-oriented decomposition considers the

system as a set of objects

Key points

