Architectural Design

portions ©lan Sommerville 1995

Establishing the overall structure
of a software system

Objectives

To introduce architectural design and its role in
the software process

To describe a number of different types of
architectural model

To show how the architecture of a system may be
modeled in different ways

To discuss how domain-specific reference models
may be used to compare software architectures

Topics covered
System structuring
Control models
Modular decomposition

Domain-specific architectures

Architectural parallels

Architects are the technical interface between the
customer and the contractor building the system

A bad architectural design for a building cannot be
rescued by good construction; the same 1s true for
software

There are specialist types of building and software
architects

There are schools or styles of building and
software architecture

Architectural design process

* System structuring

— The system is decomposed into several principal sub-
systems and communications between these sub-
systems are identified

* Control modeling

— A model of the control relationships between the
different parts of the system is established

* Modular decomposition

— The 1dentified sub-systems are decomposed into
modules

Sub-systems and modules

* A sub-system is a system in its own right whose
operation is independent of the services provided
by other sub-systems.

* A module is a system component that provides
services to other components but would not
normally be considered as a separate system

Architectural models

* Structure, control and modular decomposition may
be based on a particular model or architectural
style

* However, most systems are heterogeneous in that
different parts of the system are based on different
models and, in some cases, the system may follow
a composite model

» The architectural model used affects the
performance, robustness, distributability and
maintainability of the system

System structuring

* Concerned with decomposing the system into
interacting sub-systems

» The architectural design is normally expressed as
a block diagram presenting an overview of the
system structure

* More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

Packing robot control system

Cibject
sdentficatson
swabam

Cripper

comlrolber

Fuckaging
seection

svalem

Packinp
svsbom

The repository model

» Sub-systems must exchange data. This may be
done in two ways:

— Shared data is held in a central database or repository
and may be accessed by all sub-systems

— Each sub-system maintains its own database and passes
data explicitly to other sub-systems

* When large amounts of data are to be shared, the
repository model of sharing is most commonly
used

CASE toolset architecture

Code
genenbor

Projecl
repas by

Feport
generitar

Diesign
timsiator

Poigmm
cdibor

Desipn
anlvser

Repository model characteristics

» Advantages
— Efficient way to share large amounts of data

— Sub-systems need not be concerned with how data is
produced

— Centralized management e.g. backup, security, etc.
— Sharing model is published as the repository schema

» Disadvantages

— Sub-systems must agree on a repository data model.
Inevitably a compromise

— Data evolution is difficult and expensive
— No scope for specific management policies
— Difficult to distribute efficiently

Client-server architecture

 Distributed system model which shows how data
and processing 1s distributed across a range of
components

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

* Set of clients which call on these services

» Network which allows clients to access servers

Film and picture library

Wide bardvadth retwork

Catulopue Video Pecture Hypertext
REVED EEver KETVET RETVET

Film clip Dapitized Hypertext

Catalopue
files phiiopraphs weh

Client-server characteristics

» Advantages
— Distribution of data is straightforward

— Makes effective use of networked systems. May require
cheaper hardware

— Easy to add new servers or upgrade existing servers

» Disadvantages

— No shared data model so sub-systems use different data
organization. data interchange may be inefficient

— Redundant management in each server

— No central register of names and services - it may be
hard to find out what servers and services are available

Abstract machine model
» Used to model the interfacing of sub-systems

» Organizes the system into a set of layers (or
abstract machines) each of which provide a set of
services

» Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected

* However, often difficult to structure systems in
this way

Version management system

Wersiom nunaeement

Ohject manugement

Diatabise syslem

Ciperuting
sysbem

Control models

Are concerned with the control flow between sub-
systems. Distinct from the system decomposition
model

Centralized control

— One sub-system has overall responsibility for control,
and starts and stops other sub-systems

Event-based control

— Each sub-system can respond to externally generated
events from other sub-systems or the system’s
environment

Centralized control

A control sub-system takes responsibility for
managing the execution of other sub-systems

e (Call-return model

— Top-down subroutine model where control starts at the
top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems

* Manager model

— Applicable to concurrent systems. One system
component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement

Call-return model

Bluin
prigrim

HFoulme

‘ Fostine 1.1 I ‘]{-.lul'.m."E.ZI ‘ Houline 3.1 I ‘]-t:.'-ul'.n-.'."-.lI

Real-time system control

PoyLERIcs

PO RICs

Svaem
controlla

Computalion
POIAIRSCH

Event-driven systems

* Driven by externally generated events where the
timing of the event is outside the control of the
sub-systems which process the event

« Two principal event-driven models

— Broadcast models. An event is broadcast to all sub-
systems. Any sub-system which can handle the event
may do so

— Interrupt-driven models. Used in real-time systems
where interrupts are detected by an interrupt handler
and passed to some other component for processing

* Other event driven models include spreadsheets
and production systems

Broadcast model

 Effective in integrating sub-systems on different
computers in a network

» Sub-systems register an interest in specific events.
When these occur, control 1s transferred to the
sub-system which can handle the event

» Control policy 1s not embedded in the event and
message handler. Sub-systems decide on events of
interest to them

» However, sub-systems don’t know if or when an
event will be handled

Selective broadcasting

| x 1

Eventand mesa e hundier

Sub-sysiem
i

Interrupt-driven systems

Used in real-time systems where fast response to
an event is essential

There are known interrupt types with a handler
defined for each type

Each type is associated with a memory location

and a hardware switch causes transfer to its
handler

Allows fast response but complex to program and
difficult to validate

Interrupt-driven control

Imlermapts

Y v ¥

lolemapt
velor

Handler

Handler
i

Process
i

Handler

Handler
4
]"I.'-.'".'l.'.'\..-.
4

Process
o]

Modular decomposition

* Another structural level where sub-systems are
decomposed into modules

* Two modular decomposition models covered

— An object model where the system is decomposed into
interacting objects

— A data-flow model where the system is decomposed
into functional modules which transform inputs to
outputs. Also known as the pipeline model

 Ifpossible, decisions about concurrency should be
delayed until modules are implemented

Object models

 Structure the system into a set of loosely coupled
objects with well-defined interfaces

» Object-oriented decomposition 1s concerned with
identifying object classes, their attributes and
operations

* When implemented, objects are created from these
classes and some control model used to coordinate
object operations

Invoice processing system

Customer

]'!:I.".".".F'I

myvoice §
dale
amoaant
cuslonmer #

customer #
CiETIE
address
credit period

Imvoie

oo i
dite
dmivurl
cusbinmer

Faymmnt

lssue

Send reminder
Accept paiment
Send recepl

Fls el el
dule
amoued
customir §

Data-flow models

* Functional transformations process their inputs to
produce outputs

» May be referred to as a pipe and filter model (as in
UNIX shell)

» Variants of this approach are very common. When
transformations are sequential, this is a batch
sequential model which is extensively used in data
processing systems

* Not really suitable for interactive systems

Invoice processing system

Issue
recerpts

Faml
Py memls
due

Issae
pivmmlt
reminder

ldentify
payments

| Invneces I | Fay mimis I

Domain-specific architectures

 Architectural models which are specific to some
application domain

» Two types of domain-specific model

— Generic models which are abstractions from a number
of real systems and which encapsulate the principal
characteristics of these systems

— Reference models which are more abstract, idealized
model. Provide a means of information about that class
of system and of comparing different architectures

» Generic models are usually bottom-up models;
Reference models are top-down models

Generic models

* Compiler model is a well-known example
although other models exist in more specialized
application domains

— Lexical analyzer
— Symbol table

— Syntax analyzer
— Syntax tree

— Semantic analyzer
— Code generator

* Generic compiler model may be organized
according to different architectural models

Compiler model

Svmhol
tiable

Svntacic

unalysis

Coule
feneration

Semartic
urailyxis

Lexical

analvsis

Language processing system

Semantic

AFEISYRET

Lexical
unal v ser

Svotax
anmaly=er

Pretiy Ahbstrac Crammar i
panter svnkax tree dedunzlzon Optimizer
Editor Svmbaol Curtput Crde
o tahle definilinn gerenitor

Feposiory

Reference architectures

» Reference models are derived from a study of the
application domain rather than from existing
systems

* May be used as a basis for system implementation
or to compare different systems. It acts as a
standard against which systems can be evaluated

* OSI model is a layered model for communication
systems

OSI reference model

Applration
Presenbibon Presnkibon
Session Hexzion
Transport Transport
Beelwark Melanrk Mook
Dt Enk Dl Enk Diat Enk
Phy=acul Physacul Physacal

Commuanic tions mediam

Key points

The software architect is responsible for deriving a
structural system model, a control model and a
sub-system decomposition model

Large systems rarely conform to a single
architectural model

System decomposition models include repository
models, client-server models and abstract machine
models

Control models include centralized control and
event-driven models

Key points

* Modular decomposition models include data-flow
and object models

* Domain specific architectural models are
abstractions over an application domain. They
may be constructed by abstracting from existing
systems or may be idealized reference models

