
Architectural Design
portions ©Ian Sommerville 1995

Establishing the overall structure

of a software system

Objectives

• To introduce architectural design and its role in

the software process

• To describe a number of different types of

architectural model

• To show how the architecture of a system may be

modeled in different ways

• To discuss how domain-specific reference models

may be used to compare software architectures

Topics covered

• System structuring

• Control models

• Modular decomposition

• Domain-specific architectures

Architectural parallels

• Architects are the technical interface between the

customer and the contractor building the system

• A bad architectural design for a building cannot be

rescued by good construction; the same is true for

software

• There are specialist types of building and software

architects

• There are schools or styles of building and

software architecture

Architectural design process

• System structuring

– The system is decomposed into several principal sub-

systems and communications between these sub-

systems are identified

• Control modeling

– A model of the control relationships between the

different parts of the system is established

• Modular decomposition

– The identified sub-systems are decomposed into

modules

Sub-systems and modules

• A sub-system is a system in its own right whose

operation is independent of the services provided

by other sub-systems.

• A module is a system component that provides

services to other components but would not

normally be considered as a separate system

Architectural models

• Structure, control and modular decomposition may

be based on a particular model or architectural

style

• However, most systems are heterogeneous in that

different parts of the system are based on different

models and, in some cases, the system may follow

a composite model

• The architectural model used affects the

performance, robustness, distributability and

maintainability of the system

System structuring

• Concerned with decomposing the system into

interacting sub-systems

• The architectural design is normally expressed as

a block diagram presenting an overview of the

system structure

• More specific models showing how sub-systems

share data, are distributed and interface with each

other may also be developed

Packing robot control system

The repository model

• Sub-systems must exchange data. This may be

done in two ways:

– Shared data is held in a central database or repository

and may be accessed by all sub-systems

– Each sub-system maintains its own database and passes

data explicitly to other sub-systems

• When large amounts of data are to be shared, the

repository model of sharing is most commonly

used

CASE toolset architecture

Repository model characteristics

• Advantages

– Efficient way to share large amounts of data

– Sub-systems need not be concerned with how data is

produced

– Centralized management e.g. backup, security, etc.

– Sharing model is published as the repository schema

• Disadvantages

– Sub-systems must agree on a repository data model.

Inevitably a compromise

– Data evolution is difficult and expensive

– No scope for specific management policies

– Difficult to distribute efficiently

Client-server architecture

• Distributed system model which shows how data

and processing is distributed across a range of

components

• Set of stand-alone servers which provide specific

services such as printing, data management, etc.

• Set of clients which call on these services

• Network which allows clients to access servers

Film and picture library

Client-server characteristics

• Advantages

– Distribution of data is straightforward

– Makes effective use of networked systems. May require

cheaper hardware

– Easy to add new servers or upgrade existing servers

• Disadvantages

– No shared data model so sub-systems use different data

organization. data interchange may be inefficient

– Redundant management in each server

– No central register of names and services - it may be

hard to find out what servers and services are available

Abstract machine model

• Used to model the interfacing of sub-systems

• Organizes the system into a set of layers (or

abstract machines) each of which provide a set of

services

• Supports the incremental development of sub-

systems in different layers. When a layer interface

changes, only the adjacent layer is affected

• However, often difficult to structure systems in

this way

Version management system

Control models

• Are concerned with the control flow between sub-

systems. Distinct from the system decomposition

model

• Centralized control

– One sub-system has overall responsibility for control,

and starts and stops other sub-systems

• Event-based control

– Each sub-system can respond to externally generated

events from other sub-systems or the system’s

environment

Centralized control

• A control sub-system takes responsibility for

managing the execution of other sub-systems

• Call-return model

– Top-down subroutine model where control starts at the

top of a subroutine hierarchy and moves downwards.

Applicable to sequential systems

• Manager model

– Applicable to concurrent systems. One system

component controls the stopping, starting and

coordination of other system processes. Can be

implemented in sequential systems as a case statement

Call-return model

Real-time system control

Event-driven systems

• Driven by externally generated events where the

timing of the event is outside the control of the

sub-systems which process the event

• Two principal event-driven models

– Broadcast models. An event is broadcast to all sub-

systems. Any sub-system which can handle the event

may do so

– Interrupt-driven models. Used in real-time systems

where interrupts are detected by an interrupt handler

and passed to some other component for processing

• Other event driven models include spreadsheets

and production systems

Broadcast model

• Effective in integrating sub-systems on different

computers in a network

• Sub-systems register an interest in specific events.

When these occur, control is transferred to the

sub-system which can handle the event

• Control policy is not embedded in the event and

message handler. Sub-systems decide on events of

interest to them

• However, sub-systems don’t know if or when an

event will be handled

Selective broadcasting

Interrupt-driven systems

• Used in real-time systems where fast response to

an event is essential

• There are known interrupt types with a handler

defined for each type

• Each type is associated with a memory location

and a hardware switch causes transfer to its

handler

• Allows fast response but complex to program and

difficult to validate

Interrupt-driven control

Modular decomposition

• Another structural level where sub-systems are

decomposed into modules

• Two modular decomposition models covered

– An object model where the system is decomposed into

interacting objects

– A data-flow model where the system is decomposed

into functional modules which transform inputs to

outputs. Also known as the pipeline model

• If possible, decisions about concurrency should be

delayed until modules are implemented

Object models

• Structure the system into a set of loosely coupled

objects with well-defined interfaces

• Object-oriented decomposition is concerned with

identifying object classes, their attributes and

operations

• When implemented, objects are created from these

classes and some control model used to coordinate

object operations

Invoice processing system

Data-flow models

• Functional transformations process their inputs to

produce outputs

• May be referred to as a pipe and filter model (as in

UNIX shell)

• Variants of this approach are very common. When

transformations are sequential, this is a batch

sequential model which is extensively used in data

processing systems

• Not really suitable for interactive systems

Invoice processing system

Domain-specific architectures

• Architectural models which are specific to some

application domain

• Two types of domain-specific model

– Generic models which are abstractions from a number

of real systems and which encapsulate the principal

characteristics of these systems

– Reference models which are more abstract, idealized

model. Provide a means of information about that class

of system and of comparing different architectures

• Generic models are usually bottom-up models;

Reference models are top-down models

Generic models

• Compiler model is a well-known example

although other models exist in more specialized

application domains

– Lexical analyzer

– Symbol table

– Syntax analyzer

– Syntax tree

– Semantic analyzer

– Code generator

• Generic compiler model may be organized

according to different architectural models

Compiler model

Language processing system

Reference architectures

• Reference models are derived from a study of the

application domain rather than from existing

systems

• May be used as a basis for system implementation

or to compare different systems. It acts as a

standard against which systems can be evaluated

• OSI model is a layered model for communication

systems

OSI reference model

Key points

• The software architect is responsible for deriving a

structural system model, a control model and a

sub-system decomposition model

• Large systems rarely conform to a single

architectural model

• System decomposition models include repository

models, client-server models and abstract machine

models

• Control models include centralized control and

event-driven models

Key points

• Modular decomposition models include data-flow

and object models

• Domain specific architectural models are

abstractions over an application domain. They

may be constructed by abstracting from existing

systems or may be idealized reference models

