
Software Metrics
portions ©Ian Sommerville 1995

Any measurement which relates to a

software system, process, or related

documentation

Outline

• Properties of Metrics

• Analysis Metrics

• Design Metrics

• Implementation Metrics

• Documentation Metrics

Software metrics

• Any type of measurement which relates to a

software system, process, or related

documentation, e.g.

– Lines of code in a program

– The Fog index

– Person-days required to develop a component

• Allow the software and the software process to

be quantified

• Measures of the software process or product

• Should be captured automatically if possible

Metrics assumptions

• A software property can be measured

• The relationship exists between what we can

measure and what we want to know

• This relationship has been formalized and

validated

• It may be difficult to relate what can be measured

to desirable quality attributes

Internal and external attributes

Properties of Metrics

• Simple and Computable

• Empirically and Intuitively Persuasive

• Consistent and Objective

• Programming Language Independent

Data accuracy

• Don’t collect unnecessary data. The questions to

be answered should be decided in advance and the

required data identified.

• Tell people why the data is being collected. It

should not be part of personnel evaluation.

• Don’t rely on memory. Collect data when it is

generated, not after a project has finished and, if

possible, automatically.

Measurement analysis

• Not always obvious what data means. Analyzing

collected data is very difficult.

• Professional statisticians should be consulted if

available.

• Data analysis must take local circumstances into

account.

Analysis Metrics

• Attempt to estimate costs early in the development

process:

– Cocomo

– Function Points

Cocomo

• Effort (in person-months) as a function of lines-of-

code where b and c are constants determined by

historical data dependent on the project type:

Initial effort = b * KLOC
c

Cocomo Project Types

• Organic (b=2.4, c=1.05)

– A relatively small team develops software in a known

environment. Those involved generally have significant experience

with projects of this type. These tend to be small projects.

• Embedded (b=3.0, c=1.12)

– These projects involve the development where the intended

environment poses significant constraints. The product is

"embedded" in an environment which is inflexible.

• Semidetached (b=3.6, c=1.20)

– The team may show a mixture of experience and inexperienced

people. The project may be larger than that in the organic type.

Cocomo Cost Drivers

Factors used to adjust initial effort estimate:

Cocomo problems

• Empirical studies show high (e.g. 600%)

estimation errors.

– Breaking into subsystems may help

• How is initial size parameter obtained?

– Why are cost driver multipliers given to three-digit

accuracy?

• Does not address factors such as application

domain, methodologies, CASE tools, code reuse,

etc.

– Probably requires calibration

Function/Feature Points (1)

Compute weighted function count, FC:

Function/Feature Points (2)

• Data Communications

• Distributed Function

• Performance

• Heavily Used

Configuration

• Transaction Rate

• On-line Data Entry

• End-user Efficiency

• On-line Update

• Complex Processing

• Re-usability

• Installation Ease

• Operational Ease

• Multiple Sites

• Facilitate Change

Compute value adjustment factor, VAF, as the sum of 14

characteristics on a six point scale (0 = no influence to 5 =

strong influence).

Function/Feature Points (3)

• FP = FC * VAF

• Counts and weights are subjective

– Based on top level data flow diagrams

– Studies show median difference between raters

approximately 12%

• Studies show good correlation with FP’s

– System size

– Development effort

• But the studies are limited to MIS applications

– No good studies on scientific, mathematical,

communications, telecomm, real-time, etc.

Design Metrics

• Cohesion

• Coupling

• Complexity

Product Quality

• A quality metric should be a predictor of

product quality.

• Design quality metrics concerned with measuring

the cohesion, coupling, or complexity of a design

are supposed to correlate with quality.

• The relationship between these metrics and

quality as judged by a human may hold in some

cases but it is not clear whether or not it is

generally true.

Cohesion

• A measures of how strongly the elements within a

module are related. The stronger the better.

Types of Cohesion

• Object

• Functional

• Sequential

• Communicational

• Procedural

• Temporal

• Logical

• Coincidental

Critique

• Difficult to apply in practice.

• Tedious to apply manually and impossible to

automate.

• Informal

Coupling

• A measure of the degree of independence between

modules. When there is little interaction between

two modules, the modules are described as loosely

coupled. When there is a high degree of

interaction the modules are described as tightly

coupled.

Types of Coupling

1. Content Coupling: One module refers to or
changes the internals of another module.

2. Common Coupling: Two modules share the same
global data areas.

3. Control Coupling: Data from one module is used
to direct the order of instruction execution in
another.

4. Data Coupling: Two modules communicate via a
variable or array that is passed directly as a
parameter between the two modules. The data is
used in problem related processing, not for
program control purposes.

Coupling metrics

• Associated with Yourdon's 'Structured Design'/

Measures 'fan-in and fan-out' in a structure

chart.

• High fan-in (number of calling functions)

suggests high coupling because of module

dependencies.

• High fan-out (number of calls) suggests high

coupling because of control complexity.

Structural fan-in and fan-out

Informational fan-in/fan-out

• The approach based on the calls relationship is

simplistic because it ignores data dependencies.

• Informational fan-in/fan-out takes into account:

– Number of local data flows + number of global data

structures updated.

– Data-flow count subsumes calls relation. It includes

updated procedure parameters and procedures called

from within a module.

• Complexity = Length * (Fan-in * Fan-out)2

– Length is any measure of program size such as LOC.

Validation of Fan-in/fan-out

• Some studies with Unix found that informational

fan-in/fan-out allowed complex and potentially

faulty components to be identified.

• Some studies suggest that size and number of

branches are as useful in predicting complexity

than informational fan-in/fan-out.

• Fan-out on its own also seemed to be a good

quality predictor.

• The whole area is still a research area rather

than practically applicable.

CK Metrics for OO Designs

• Proposed by Chidamber and Kemerer

• Weighted Methods per Class (WMC)

– A weighted sum of all the methods in a class.

– How to weight the methods is a matter of debate. Some

authors have used method length, cyclomatic

complexity, or weighted all methods equally.

• Coupling Between Object classes (CBO)

– A count of the number of other classes to which a given

class is coupled. A class is coupled to another if it sends

messages to objects or invokes constructors of the other

class.

– Inherited couplings are included in the count.

CK Metrics (2)

• Depth of Inheritance Tree (DIT)

– Length of the longest path from a given class to the root

class of the inheritance hierarchy.

• Number of Children (NOC)

– The number of immediate subclasses.

• Response for a Class (RFC)

– The count of the maximum number of methods that can

be potentially invoked in response to a single message

received by an object of a particular class.

CK Metrics (3)

• Lack of Cohesion of Methods (LCOM)

– A count of the number of method-pairs whose

similarity is zero minus the count of method pairs

whose similarity is not zero.

– Similarity refers to the number of instance variables by

the methods.

CK Metrics Validation

• As of 2004, there have been about 10 empirical
studies on the CK Metrics.

• Most studies have found correlations between one
or more of the CK metrics and defects or
maintenance cost.

• Studies are inconsistent as to which of the metrics
are useful.

• One study found that size overwhelmed the effect
of all metrics on defects.

• CK metrics do not take into account certain other
factors (e.g. encapsulation, polymorphism) that
effect complexity.

Implementation Metrics

• Design metrics are also applicable to programs.

• Other metrics include:

– Length. The size of the program source code.

– Cyclomatic complexity. The complexity of program

control.

– Length of identifiers.

– Depth of conditional nesting.

• Anomalous metric values suggest a component

may contain an above average number of defects

or may be difficult to understand.

Lines of Code

• Lines of code (LOC or KLOC) is typically

correlated with effort. Boehm, Walston-Felix, and

Halstead all indicate Effort as a function of lines

of code.

• Support

– Easy to Determine

– Easy to Automate

– Easy to Enforce

LOC - Objections

• Some programmers write more verbose programs

than others.

• Difficult to compare programs written in different

languages.

• Some lines are more complex than others.

• What constitutes a line of code?

LOC - What is a

line of code?

CIS 580 Software Metrics 35

Cyclomatic Complexity

• Based on determining how complicated the

control flow a program (procedure or function) is.

• The control flow is represented as directed graph.

• CC = Number(edges) - Number(nodes) + 1

Sequence: CC = 0

If-else: CC = 1

While loop: CC = 1

Cyclomatic Complexity (2)

Program metrics utility

• Lines of code is simple, but experiments indicate

it is a good predictor of problems.

• Cyclomatic complexity is a measure of control

structure complexity, but has two drawbacks:

– It is inaccurate for data-driven programs as it is only

concerned with control constructs.

– It places the same weight on nested and non-nested

loops. Deeply nested structures, however, are usually

harder to understand.

Reliability metrics

• Probability of failure-free operation for a specified

time in a specified environment for a given

purpose.

• This means quite different things depending on

the system and the users of that system.

• Informally, reliability is a measure of how well

system users think it provides the services they

require.

Software reliability

• Cannot be defined objectively

– Reliability measurements which are quoted out of

context are not meaningful

• Requires operational profile for its definition

– The operational profile defines the expected pattern of

software usage

• Must consider fault consequences

– Not all faults are equally serious. System is perceived

as more unreliable if there are more serious faults

Failures and faults

• A failure corresponds to unexpected run-time

behavior observed by a user of the software.

• A fault is a static software characteristic which

causes a failure to occur.

• Faults need not necessarily cause failures. They

only do so if the faulty part of the software is

used.

• If a user does not notice a failure, is it a failure?

Remember most users don’t know the software

specification.

Reliability metrics

• Probability of failure on demand

– This is a measure of the likelihood that the system will

fail when a service request is made.

– POFOD = 0.001 means 1 out of 1000 service requests

result in failure.

– Relevant for safety-critical or non-stop systems.

• Rate of failure occurrence (ROCOF)

– ROCOF of 0.02 means 2 failures are likely in each 100

operational time units.

– Relevant for operating systems, transaction processing

systems.

Reliability metrics

• Mean time between failure

– Measure of the time between observed failures.

– MTBF is the reciprocal of ROCOF if the system is not

being changed during operation.

• Availability

– Measure of how likely the system is available for use.

Takes repair/restart time into account.

– Availability of 0.998 means software is available for

998 out of 1000 time units.

– Relevant for continuously running systems e.g.

telephone switching systems.

Time units

• Time units in reliability measurement must be

carefully selected. Not the same for all systems.

• Raw execution time (for non-stop systems).

• Calendar time (for systems which have a

regular usage pattern e.g. systems which are

always run once per day).

• Number of transactions (for systems which are

used on demand).

Failure consequences

• Reliability measurements do NOT take the

consequences of failure into account

• Transient faults may have no real consequences

but other faults may cause data loss or corruption

and loss of system service

• May be necessary to identify different failure

classes and use different measurements for each of

these

Documentation quality metrics

• Readability of documentation is important.

• Gunnings Fog index is a simple measure of

readability.

– Based on length of sentences and number of syllables

in a word

• However, this can be misleading when applied to

technical documentation.

Key points

• Metrics gather information about both process and

product.

• Quality metrics should be used to identify

potentially problematical components.

• Lack of commonality across software process

between organizations makes universal metrics

difficult to develop.

• Metrics probably need to be calibrated to

particular application domains and development

organizations.

Key points

• Metrics still have a limited value and are not

widely collected.

• Relationships between what we can measure

and what we want to know are not well-

understood.

