Software Metrics

portions ©lan Sommerville 1995

Any measurement which relates to a
software system, process, or related
documentation

Outline

Properties of Metrics
Analysis Metrics
Design Metrics
Implementation Metrics

Documentation Metrics

Software metrics

Any type of measurement which relates to a
software system, process, or related
documentation, €.g.

— Lines of code in a program

— The Fog index

— Person-days required to develop a component

Allow the software and the software process to
be quantified

Measures of the software process or product

Should be captured automatically if possible

Metrics assumptions

A software property can be measured

The relationship exists between what we can
measure and what we want to know

This relationship has been formalized and
validated

It may be difficult to relate what can be measured

to desirable quality attributes

Internal and external attributes

Mumbo of pmodare
Pl itmeters

Maintainabaliy

Crvclomatic complexily

Beliability

Program size i lines
of code

i

Poddbaliy

Numbe of emmor
T 5680 %

Lisubilziy

Length of var manud

Properties of Metrics

Simple and Computable

Empirically and Intuitively Persuasive

Consistent and Objective

Programming Language Independent

Data accuracy

* Don’t collect unnecessary data. The questions to
be answered should be decided in advance and the
required data identified.

» Tell people why the data is being collected. It
should not be part of personnel evaluation.

* Don’t rely on memory. Collect data when it is
generated, not after a project has finished and, 1f
possible, automatically.

Measurement analysis

* Not always obvious what data means. Analyzing
collected data is very difficult.

» Professional statisticians should be consulted if
available.

 Data analysis must take local circumstances into
account.

Analysis Metrics

 Attempt to estimate costs early in the development
process:
— Cocomo

— Function Points

Cocomo

 Effort (in person-months) as a function of lines-of-
code where b and ¢ are constants determined by
historical data dependent on the project type:

Initial effort = b * KLOC*®

Cocomo Project Types

* Organic (b=2.4, c=1.05)

— A relatively small team develops software in a known
environment. Those involved generally have significant experience
with projects of this type. These tend to be small projects.

 Embedded (b=3.0, c=1.12)

— These projects involve the development where the intended
environment poses significant constraints. The product is
"embedded" in an environment which is inflexible.

» Semidetached (b=3.6, c=1.20)

— The team may show a mixture of experience and inexperienced
people. The project may be larger than that in the organic type.

Cocomo Cost Drivers

Factors used to adjust initial effort estimate:

Cost Drivers Rating
eIV lowr norinal hizgh VeIV extra
low high high
Product Ataibutes
Reliability .75 .85 1.00 1.15 1.40
Diata base .94 1.00 1.08 1.1
Product Complexity .70 .85 1.00 1.15 1.30 1.65
Computer Attributes
Execution Time 1.00 1.11 1.30 1.66
IMain Btorage 1.00 1.06 1.21 1.56
Virmal Machine Volatility .87 1.00 1.15 1.30
Computer Turnaround Time a7 1.00 1.07 1.15
Personnel Attributes
Analyvst Capabilities 1.46 1.19 1.00 .86 .7
Applications Experence 1.29 1.13 1.00 .91 Bz
Programmer Capability 1.4z 1.17 1.00 .86 70
Virtual Machine Experience 1.21 1.10 1.00 R=ln)
Prog. Lang. Experience 1.14 1.07 1.00 95
Project Atiributes
sze of modern prog. Tech. 1.24 1.10 1.00 91 .82
Use of Software Tools 1.24 1.10 1.00 91 83
Development Schedule 1.23 1.08 1.00 1.04 1.10

Cocomo problems

» Empirical studies show high (e.g. 600%)
estimation errors.

— Breaking into subsystems may help

» How is initial size parameter obtained?

— Why are cost driver multipliers given to three-digit
accuracy?

» Does not address factors such as application
domain, methodologies, CASE tools, code reuse,
etc.

— Probably requires calibration

Function/Feature Points (1)

Compute weighted function count, FC:

(WEIShi N SIEACIOTS

(VDS (DESCH DUOL ST DICEMA Vera cclBCompleX]
1D UKD (USENnut 3] %l 6
@higguii () (USEROUpUT] Al 5 [/
] (USenpucskithatiControll 5

Irepsigy [02)] Y 3] O

st (15) [ERECULON) .

YO JLCT 114 Yatakmajintair ‘“F p
L ooycal |:|itf el) lPﬂ'l majntamed! " i 15
liianed| (B By R gjioim
Ihisdiess EI =E IDatal outputhtol another] 6 "‘ il [.]

DLoSany

Function/Feature Points (2)

Compute value adjustment factor, VAF, as the sum of 14
characteristics on a six point scale (0 = no influence to 5 =
strong influence).

Data Communications
Distributed Function
Performance

Heavily Used
Configuration

Transaction Rate
On-line Data Entry
End-user Efficiency

On-line Update
Complex Processing
Re-usability
Installation Ease
Operational Ease
Multiple Sites
Facilitate Change

Function/Feature Points (3)

FP =FC * VAF

Counts and weights are subjective

— Based on top level data flow diagrams

— Studies show median difference between raters

approximately 12%

Studies show good correlation with FP’s

— System size
— Development effort

But the studies are limited to MIS applications

— No good studies on scientific, mathematical,
communications, telecomm, real-time, etc.

Design Metrics
* Cohesion
* Coupling
» Complexity

Product Quality

A quality metric should be a predictor of
product quality.

» Design quality metrics concerned with measuring
the cohesion, coupling, or complexity of a design
are supposed to correlate with quality.

 The relationship between these metrics and
quality as judged by a human may hold in some
cases but it is not clear whether or not it is
generally true.

Cohesion

» A measures of how strongly the elements within a
module are related. The stronger the better.

Types of Cohesion

* Object

* Functional

» Sequential

* Communicational

* Procedural

* Temporal

* Logical

» (Coincidental

Critique
« Difficult to apply in practice.

» Tedious to apply manually and impossible to
automate.

e Informal

Coupling

* A measure of the degree of independence between
modules. When there is little interaction between
two modules, the modules are described as loosely
coupled. When there is a high degree of
interaction the modules are described as tightly
coupled.

Types of Coupling

1. Content Coupling: One module refers to or
changes the internals of another module.

2. Common Coupling: Two modules share the same
global data areas.

3. Control Coupling: Data from one module is used
to direct the order of instruction execution in
another.

4. Data Coupling: Two modules communicate via a
variable or array that is passed directly as a
parameter between the two modules. The data is
used in problem related processing, not for
program control purposes.

Coupling metrics

» Associated with Yourdon's 'Structured Design'/
Measures 'fan-in and fan-out' in a structure
chart.

» High fan-in (number of calling functions)
suggests high coupling because of module
dependencies.

* High fan-out (number of calls) suggests high
coupling because of control complexity.

Structural fan-in and fan-out

Fani=in

Compoment A

Informational fan-in/fan-out

» The approach based on the calls relationship is
simplistic because it ignores data dependencies.

» Informational fan-in/fan-out takes into account:

— Number of local data flows + number of global data
structures updated.

— Data-flow count subsumes calls relation. It includes
updated procedure parameters and procedures called
from within a module.

« Complexity = Length * (Fan-in * Fan-out)?
— Length 1s any measure of program size such as LOC.

Validation of Fan-in/fan-out

* Some studies with Unix found that informational
fan-in/fan-out allowed complex and potentially
faulty components to be identified.

» Some studies suggest that size and number of
branches are as useful in predicting complexity
than informational fan-in/fan-out.

» Fan-out on its own also seemed to be a good
quality predictor.

* The whole area 1s still a research area rather
than practically applicable.

CK Metrics for OO Designs

* Proposed by Chidamber and Kemerer
» Weighted Methods per Class (WMC)

— A weighted sum of all the methods in a class.

— How to weight the methods is a matter of debate. Some
authors have used method length, cyclomatic
complexity, or weighted all methods equally.

» Coupling Between Object classes (CBO)

— A count of the number of other classes to which a given
class is coupled. A class is coupled to another if it sends
messages to objects or invokes constructors of the other
class.

— Inherited couplings are included in the count.

CK Metrics (2)

* Depth of Inheritance Tree (DIT)

— Length of the longest path from a given class to the root
class of the inheritance hierarchy.

* Number of Children (NOC)

— The number of immediate subclasses.

» Response for a Class (RFC)

— The count of the maximum number of methods that can
be potentially invoked in response to a single message
received by an object of a particular class.

CK Metrics (3)

» Lack of Cohesion of Methods (LCOM)

— A count of the number of method-pairs whose
similarity is zero minus the count of method pairs
whose similarity is not zero.

— Similarity refers to the number of instance variables by
the methods.

CK Metrics Validation

As of 2004, there have been about 10 empirical
studies on the CK Metrics.

Most studies have found correlations between one
or more of the CK metrics and defects or
maintenance cost.

Studies are inconsistent as to which of the metrics
are useful.

One study found that size overwhelmed the effect
of all metrics on defects.

CK metrics do not take into account certain other
factors (e.g. encapsulation, polymorphism) that
effect complexity.

Implementation Metrics

Design metrics are also applicable to programs.

Other metrics include:
— Length. The size of the program source code.

— Cyclomatic complexity. The complexity of program
control.

— Length of identifiers.
— Depth of conditional nesting.

Anomalous metric values suggest a component
may contain an above average number of defects
or may be difficult to understand.

Lines of Code

Lines of code (LOC or KLOC) is typically
correlated with effort. Boehm, Walston-Felix, and
Halstead all indicate Effort as a function of lines
of code.

Support

— Easy to Determine
— Easy to Automate
— Easy to Enforce

LOC - Objections

Some programmers write more verbose programs
than others.

Difficult to compare programs written in different
languages.

Some lines are more complex than others.

What constitutes a line of code?

LOC - What 1s a
line of code?

CIS 580

Physical Source Lines of Code

Statement Type Includes Excludes

Executable X
Declarations X

Compiler Directives X

Comments on their own lines X
Aszzertions (Pre/Postconditions) X
Prc-g:_mn_.'pm-:edum x
and function banners

Blank Lines X
Blank Comments X

Lines of Documentation

Statement Type Includes Excludes

Clomuments on their own lines X
Aszzertions (Pre/Postconditions) X
Comments with sovrce lines

Program, procedure
and fonction banners

Elank Lines

Blank Comments

Software Metrics

35

Cyclomatic Complexity

* Based on determining how complicated the

control flow a program (procedure or function) is.

The control flow is represented as directed graph.

e CC = Number(edges) - Number(nodes) + 1

Cyclomatic Complexity (2)

O——O Sequence: CC =0

/O\

Q\Q/O If-else: CC = 1

/O

While loop: CC =1
e p

Program metrics utility

* Lines of code is simple, but experiments indicate
it 1s a good predictor of problems.

* Cyclomatic complexity is a measure of control
structure complexity, but has two drawbacks:

— It is inaccurate for data-driven programs as it is only
concerned with control constructs.

— It places the same weight on nested and non-nested
loops. Deeply nested structures, however, are usually
harder to understand.

Reliability metrics

» Probability of failure-free operation for a specified
time in a specified environment for a given

purpose.

» This means quite different things depending on
the system and the users of that system.

 Informally, reliability is a measure of how well
system users think it provides the services they
require.

Software reliability

« Cannot be defined objectively

— Reliability measurements which are quoted out of
context are not meaningful

» Requires operational profile for its definition

— The operational profile defines the expected pattern of
software usage

» Must consider fault consequences

— Not all faults are equally serious. System is perceived
as more unreliable if there are more serious faults

Failures and faults

A failure corresponds to unexpected run-time
behavior observed by a user of the software.

» A fault 1s a static software characteristic which
causes a failure to occur.

 Faults need not necessarily cause failures. They
only do so if the faulty part of the software is
used.

» If a user does not notice a failure, 1s it a failure?
Remember most users don’t know the software
specification.

Reliability metrics

 Probability of failure on demand

— This 1s a measure of the likelithood that the system will
fail when a service request is made.

— POFOD = 0.001 means 1 out of 1000 service requests
result in failure.

— Relevant for safety-critical or non-stop systems.

» Rate of failure occurrence (ROCOF)

— ROCOF of 0.02 means 2 failures are likely in each 100
operational time units.

— Relevant for operating systems, transaction processing
systems.

Reliability metrics

 Mean time between failure

— Measure of the time between observed failures.

— MTBEF is the reciprocal of ROCOF if the system is not
being changed during operation.

 Availability
— Measure of how likely the system is available for use.
Takes repair/restart time into account.

— Availability of 0.998 means software is available for
998 out of 1000 time units.

— Relevant for continuously running systems e.g.
telephone switching systems.

Time units

* Time units in reliability measurement must be
carefully selected. Not the same for all systems.

« Raw execution time (for non-stop systems).

» Calendar time (for systems which have a
regular usage pattern e.g. systems which are
always run once per day).

* Number of transactions (for systems which are
used on demand).

Failure consequences

» Reliability measurements do NOT take the
consequences of failure into account

» Transient faults may have no real consequences
but other faults may cause data loss or corruption
and loss of system service

* May be necessary to identify different failure
classes and use different measurements for each of
these

Documentation quality metrics

» Readability of documentation is important.

* Gunnings Fog index is a simple measure of
readability.

— Based on length of sentences and number of syllables
in a word

« However, this can be misleading when applied to
technical documentation.

Key points

Metrics gather information about both process and
product.

Quality metrics should be used to identify
potentially problematical components.

Lack of commonality across software process
between organizations makes universal metrics
difficult to develop.

Metrics probably need to be calibrated to
particular application domains and development
organizations.

Key points

Metrics still have a limited value and are not
widely collected.

Relationships between what we can measure
and what we want to know are not well-
understood.

