
Aspect-Oriented Programming

Separation of Concerns

• Breaking down a program into distinct parts that

overlap in functionality as little as possible.

• All programming methodologies support some

separation and of concerns, e.g. procedures,

packages, classes, and methods.

• Other examples include MVC architecture, CSS

style sheets with HTML, etc.

Cross-cutting Concerns

• Secondary requirements that are shared between

program units.

– For example: we may want to add logging to classes

within the data-access layer and also to classes in the

UI layer whenever a thread enters or exits a method.

Even though the primary functionality of each class is

very different, the code needed to perform the

secondary functionality is often identical.

• Normal forms of encapsulation are not adequate to

handle crosscutting concerns (e.g. security,

logging) that cut across multiple modules in a

program.

Cohesion

• When one concern (e.g. logging or security) is

spread over a number of components (e.g., classes

and methods) there is a loss of cohesion.

• Components end up tangled with multiple

concerns (e.g., account processing, logging, and

security). Changing one component entails

understanding all the tangled concerns.

• Code to implement a single concern is scattered

among many components, making it harder to

understand and maintain.

Aspects

• Cross-cutting concerns do not get properly

encapsulated in their own modules. This increases

the system complexity and makes evolution

considerably more difficult.

• AOP attempts to solve this problem by allowing

the programmer to express cross-cutting concerns

in separate stand-alone modules called aspects.

Advice

• The additional code that you want to apply to your

existing model.

– For example, a security module could include advice

that performs a security check before accessing a bank

account.

• Advice code is joined to specified points in the

program called join points.

Join Point Models

• A JPM defines three things:

– Join points that specify where in the existing

code the advice can run. They should be stable

across minor program changes.

– Point-cuts that determine whether a given join

point matches.

– Advice that specifies the code to run at a join

point. Advice can run before, after, or around

join points.

AspectJ Join Points

• method or constructor call or execution

• initialization of a class or object

• field read and write access

• exception handlers, etc.

• Not: loops, super calls, throws clauses, blocks,

etc.

AspectJ Pointcut Designators

• Kinded PCDs match a particular kind of join point (e.g.,
method execution) and take as input a Java-like signature:

– execution(* set*(*))
matches a method execution join point, if the method name starts
with "set" and there is exactly one argument of any type.

• Dynamic PCDs check runtime types and bind variables, e.g:

– this(Point)
matches when the currently-executing object is an instance of class
Point.

• Scope PCDs limit the scope of the join point, e.g:

– within(com.company.*)

• Pointcuts can be composed and named for reuse.

– pointcut set() : execution(* set*(*)) && this(Point) &&
 within(com.company.*);

AspectJ Advice

• Advice specifies the code to run before, after, or
around join points that match a specified pointcut.

• Advice is invoked automatically by the AOP
runtime when a join point matches the pointcut.
For example:

 after() : set() {
 Display.update();

 }

• If a join point matches the set() pointcut, the code
“Display.update()” will run after the join point
completes.

Disadvantages of AOP

• Tool support is currently weak

• Mistakes in expressing crosscutting can lead to

widespread program failure.

• Changes in the join points of a program, e.g.

renaming or moving methods, that were not

anticipated by the aspect writer may cause

failures.

• Security can be broken by using AOP to inject

additional code at the appropriate places.

