Aspect-Oriented Programming

Separation of Concerns

» Breaking down a program into distinct parts that
overlap in functionality as little as possible.

* All programming methodologies support some
separation and of concerns, e.g. procedures,
packages, classes, and methods.

* Other examples include MVC architecture, CSS
style sheets with HTML, etc.




Cross-cutting Concerns

» Secondary requirements that are shared between
program units.

— For example: we may want to add logging to classes
within the data-access layer and also to classes in the
Ul layer whenever a thread enters or exits a method.
Even though the primary functionality of each class is
very different, the code needed to perform the
secondary functionality is often identical.

* Normal forms of encapsulation are not adequate to
handle crosscutting concerns (e.g. security,
logging) that cut across multiple modules in a
program.

Cohesion

* When one concern (e.g. logging or security) is
spread over a number of components (e.g., classes
and methods) there is a loss of cohesion.

* Components end up tangled with multiple
concerns (e.g., account processing, logging, and
security). Changing one component entails
understanding all the tangled concerns.

* Code to implement a single concern is scattered
among many components, making it harder to
understand and maintain.




Aspects

» Cross-cutting concerns do not get properly
encapsulated in their own modules. This increases
the system complexity and makes evolution
considerably more difficult.

* AOP attempts to solve this problem by allowing
the programmer to express cross-cutting concerns
in separate stand-alone modules called aspects.

Advice

» The additional code that you want to apply to your
existing model.

— For example, a security module could include advice
that performs a security check before accessing a bank
account.

» Advice code is joined to specified points in the
program called join points.




Join Point Models

* A JPM defines three things:

— Join points that specify where in the existing
code the advice can run. They should be stable
across minor program changes.

— Point-cuts that determine whether a given join
point matches.

— Adyvice that specifies the code to run at a join
point. Advice can run before, after, or around
join points.

Aspect] Join Points

» method or constructor call or execution
* initialization of a class or object

« field read and write access

 exception handlers, etc.

» Not: loops, super calls, throws clauses, blocks,
etc.




Aspect] Pointcut Designators

* Kinded PCDs match a particular kind of join point (e.g.,
method execution) and take as input a Java-like signature:

— execution(* set*(*))
matches a method execution join point, if the method name starts
with "set" and there is exactly one argument of any type.

* Dynamic PCDs check runtime types and bind variables, e.g:
— this(Point)
matches when the currently-executing object is an instance of class
Point.

* Scope PCDs limit the scope of the join point, e.g:
— within(com.company.*)

» Pointcuts can be composed and named for reuse.

— pointcut set() : execution(* set*(*) ) && this(Point) &&
within(com.company.*);

Aspect] Advice

» Advice specifies the code to run before, after, or
around join points that match a specified pointcut.

» Advice is invoked automatically by the AOP
runtime when a join point matches the pointcut.
For example:

after () : set() {
Display.update () ;
}

 If ajoin point matches the set() pointcut, the code
“Display.update()” will run after the join point
completes.




Disadvantages of AOP

Tool support is currently weak

Mistakes in expressing crosscutting can lead to
widespread program failure.

Changes in the join points of a program, e.g.
renaming or moving methods, that were not
anticipated by the aspect writer may cause
failures.

Security can be broken by using AOP to inject
additional code at the appropriate places.




